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Retuning of hippocampal representations 
during sleep

Kourosh Maboudi1,2, Bapun Giri1,2, Hiroyuki Miyawaki2,5, Caleb Kemere3 & Kamran Diba1,4 ✉

Hippocampal representations that underlie spatial memory undergo continuous 
refinement following formation1. Here, to track the spatial tuning of neurons 
dynamically during offline states, we used a new Bayesian learning approach based  
on the spike-triggered average decoded position in ensemble recordings from freely 
moving rats. Measuring these tunings, we found spatial representations within 
hippocampal sharp-wave ripples that were stable for hours during sleep and were 
strongly aligned with place fields initially observed during maze exploration.  
These representations were explained by a combination of factors that included 
preconfigured structure before maze exposure and representations that emerged 
during θ-oscillations and awake sharp-wave ripples while on the maze, revealing  
the contribution of these events in forming ensembles. Strikingly, the ripple 
representations during sleep predicted the future place fields of neurons during 
re-exposure to the maze, even when those fields deviated from previous place 
preferences. By contrast, we observed tunings with poor alignment to maze place 
fields during sleep and rest before maze exposure and in the later stages of sleep.  
In sum, the new decoding approach allowed us to infer and characterize the stability 
and retuning of place fields during offline periods, revealing the rapid emergence of 
representations following new exploration and the role of sleep in the representational 
dynamics of the hippocampus.

Memories are continuously refined after they form. Different stages 
of sleep have important roles in the transformations that memories 
undergo, but many aspects of these offline processes remain unknown. 
Memories that involve the hippocampus are particularly affected by 
sleep, which alters molecular signalling, excitability and synaptic con-
nectivity of hippocampal neurons2,3. Memories are considered to be 
represented by the activity of ensembles of neurons that form during 
experience4. In the rat hippocampus, these ensembles are tuned to 
locations in a maze environment5. Indeed, an animal’s position can be 
decoded from the spike trains recorded from a population of neurons6 
(Fig. 1a). Spatial representations, however, do not remain stationary 
following initial formation. In many cases, the place fields (PFs) of hip-
pocampal neurons develop and shift during traversals of an environ-
ment7,8, remap upon exposure to different arenas9 and reset or remap 
even with repeated exposure to the same place1,10. This presents a chal-
lenge to traditional decoding approaches that rely on the assumption 
that hippocampal neurons always represent the same maze positions 
as they do in a specific behavioural session11, including mazes that the 
animal has yet to experience12.

We conjectured that modifications of spatial representations would 
take place during sleep when connections between some neurons are 
strengthened while those between other neurons are weakened2,13. 
Consistent with this conjecture, cells that become active in a new envi-
ronment continue to reactivate for hours during sharp-wave ripples 

in sleep14, suggesting that offline processes during sleep involve the 
spatial representations of hippocampal neurons. Moreover, the col-
lective hippocampal map of space shows changes following sleep15 
and some cells express immediate early genes during this period that 
can mark them for sleep-dependent processing16. However, although 
spatial representations are readily measured from the spiking activi-
ties of neurons when animals explore a maze environment, access to 
these non-stationary representations is lost when animals cease explor-
ing, making it challenging to evaluate how spatial representations are 
shaped over time.

To evaluate and track the spatial preferences of a neuron across online 
and offline periods, we developed a new method based on Bayesian 
learning17 (Fig. 1b,c). Under the assumption of conditional independ-
ence of Poisson spike counts from hippocampal neurons conditioned 
on location, we derived the Bayesian learned tuning (LT) of a neuron 
from the spike-triggered average of the posterior probability distribu-
tion of position determined from the simultaneous spiking patterns of 
all other neurons in the recorded ensemble, including for time periods 
when animals were remote from the maze locations for which position 
was specified. In this formalism, the internally generated preference 
of a neuron for a location is revealed through its consistent coactivity 
with other neurons in the ensemble associated with that position. These 
Bayesian LTs allowed us to track the place preferences of neurons as 
they evolved in exceptionally long-duration (up to 14 h) hippocampal 
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unit recordings, enabling us to identify those periods and events in 
which the firing activities of neurons were consistent or inconsistent 
with PFs on the maze and to characterize the plastic offline changes in 
tuning relative to the broader ensemble.

Spatial tunings post maze align with maze PFs
We first examined how tuning curves are affected by an animal’s expe-
rience on a maze by characterizing the representations of neurons 
from spike trains recorded from the rat hippocampus in experiments 
in which rest and sleep in a home cage both preceded (PRE) and fol-
lowed (POST) exposure to a new track (MAZE), in which rats ran for 
water reward. To examine spatial tunings in each brain state separately, 
we first separated unit and local field potential data recorded from 
hippocampal region CA1 into different states using general criteria 
(Methods) for rapid eye movement (REM) sleep (sleep featuring 
prominent hippocampal θ-oscillations), ripple periods during rest 
and sleep (150–250 Hz band power accompanied by high multi-unit 
firing rates), slow-wave sleep (SWS) periods exclusive of ripples and 
active wake (with prominent θ-oscillations). We calculated PFs and 
the LTs for each epoch for all pyramidal units with peak spatial fir-
ing rates >1 Hz on the maze (Fig. 2a–c). We limited the initial analysis 
to the first 4 h of POST, during which we expect greater similarity to 
maze firing patterns14. LTs showed a wide distribution of fidelity to 
PFs from PRE to POST depending on brain state. Population vector 
correlations between spatial bins in PFs and LTs (Fig. 2b) and LT–PF 
Pearson correlation coefficients (Fig. 2c) demonstrated that the high-
est fidelities to PFs were observed in spatial representations during 
θ-oscillations and ripples on the maze, as expected18–20. However, 
among offline periods only spatial tunings evidenced during POST, 
particularly those during ripples, showed significant correlations 

with unit PFs in MAZE, and notably not those during PRE. LTs that 
exhibited fidelity to MAZE PFs could be composed from individual 
ripple events (Fig. 1c) but improved by averaging over multiple events 
(Extended Data Fig. 1). These differences were not due to differences 
in the proportion of time in rest versus sleep or in the number of active 
firing bins (Extended Data Fig. 1c). The fidelity of LTs further varied 
during SWS; tunings derived from ripples during periods of high 
δ-oscillation (0.5–4 Hz) and high spindle (8–16 Hz) power exhibited 
higher PF fidelities compared to those from periods with low power 
(Extended Data Fig. 2a–c). Notably, we observed weak but significantly 
aligned representations consistent with the maze during POST REM 
sleep, when vivid dream episodes are frequently experienced21. These 
representations were best aligned at the trough and descending phase 
of REM θ-oscillations (Extended Data Fig. 2f), which may reflect that 
only specific time windows during REM sleep correspond to previous 
experience22. Overall, these findings provide a measurement of the 
temporal variations in hippocampal ensemble firing patterns and 
indicate that neurons maintain internal tunings consistent with their 
PFs on the maze primarily during ripples in POST SWS.

Spatial representations are more stable post maze
We next tracked the LTs of neurons over time and examined the 
consistency of their place preferences in different epochs. We cal-
culated LTs from all ripple events in 15-min windows sliding in 5-min 
steps during each session, from PRE through MAZE and the first 4 h 
of POST. Sample unit tunings from a recording session are shown in 
Fig. 3a (additional examples are provided in Extended Data Fig. 3). 
These examples show stable LTs for successive time windows during 
POST, and in some instances also during PRE. To quantify the overall 
stability of LTs for each unit, we used Pearson correlation coefficients 
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Fig. 1 | Bayesian learning of hippocampal spatial tunings during offline 
states. a, Hippocampal place cells show tuning to specific locations (PFs) on  
a linear track maze. When animals sleep or rest outside the maze, the spiking  
of these neurons is no longer driven by maze locations, x, but may represent 
internally generated simulations of x or other locations. b, We used Bayesian 
learning to assess each neuron’s tuning ∣p x′(spike ) for internally generated 
cognitive space, x, using the PFs of all other neurons recorded on the maze, 
under the assumption of conditional independence among Poisson spiking 
neurons conditioned on space (Methods). Top left: sample spike raster during 
an example maze traversal. Top right: spiking patterns of the same cells during 
a brief window in sleep. For each iteration, one cell is selected as the learning 
neuron. Bottom left: population activity extracted for time bins in which the 
learning neuron spikes. Bottom middle: next, posterior probability (prob.) 
distributions are constructed using the spikes and track tunings of the other 

neurons during these time bins. Max., maximum. Bottom right: the Bayesian LT 
∣p x′(spike ) is equal to the summation of the posterior distributions over these 

time bins ( ∣∑ p x( spike)), normalized by the overall likelihood of each track 
location (∑ p x( )) obtained across the entire offline period. c, Example tunings 
derived from single ripple events recorded during rest and sleep in the home 
cage following maze exposure. For each offline ripple event, shown are the 
spike raster (left) with ripple band signal above, tunings learned for each unit 
from the raster (middle) and the PFs on the maze (right). Although, in principle, 
tunings can be derived from individual events, in practice they are best 
evaluated by combining across multiple ripple events (Extended Data Fig. 1). 
Scale bars, 50 cm (a) and 1 s (b). Drawings of rats in a by E. Ackermann, 
reproduced from https://github.com/kemerelab/ratpack/ under a Creative 
Commons licence CC BY-SA 4.0.

https://github.com/kemerelab/ratpack/
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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to assess the consistency of the LTs across time windows within and 
between behavioural epochs (Fig. 3b). High off-diagonal values in the 
correlation matrices within an epoch indicated that the LT remained 
stable during that epoch. For the example units in Fig. 3a, we com-
pared the median LT stability values from each epoch against shuffle 
distributions generated by randomizing the unit identities of the LTs 
at each time window (Fig. 3c). This z-scored LT stability was >0 in both 
PRE and POST in this session (Fig. 3d) and for data pooled across all 
sessions (Fig. 3e), but it was significantly higher in POST compared 
to PRE, revealing that POST sleep representations were more stable 
than those in PRE. When we measured the LT stability across time 
windows from PRE and POST epochs, to examine their consistency 
from before to after the new maze exposure when PFs first form, the 
PRE with POST LT stability was not significantly greater than 0 in the 

example session (median = 0.65, P = 0.16), rose to significance in the 
pooled data (P < 10−4, Wilcoxon signed rank test (WSRT, n = 660)), but 
remained significantly lower than the stabilities observed within PRE 
and POST (PRE versus PRE with POST: P < 10−4; POST versus PRE with 
POST: P < 10−4, WSRT (n = 660)), thus signalling that only a small minor-
ity of units maintained the same consistent spatial tuning from before 
to after maze exposure.

A subset of units showed remarkably stable LTs during PRE, which 
compelled us to consider whether the LTs of those units might show 
higher fidelity with maze PFs. To test this conjecture, we divided units 
into ‘stable’ and ‘unstable’ on the basis of whether their z-scored LT 
stability was greater or less than 2 (PRE: 371 stable versus 289 unsta-
ble; POST: 454 stable versus 206 unstable), respectively, in both 
PRE and POST (Fig. 3f). In POST, units with both stable and unstable 

0 1
Position (normalized)

1

660
U

ni
t

PFs

0 1

SWS
ripples

0 1

QW
ripples

0 1

Non-ripple
SWS

0 1

REM

0 1

Active
home cage

0 1

θ-
oscillations

0 1

QW
ripples

0 1

SWS
ripples

0 1

QW
ripples

0 1

Non-ripple
SWS

0 1

REM

0 1

Active
home cage

0 1
0

1

Fi
el

d
 p

os
iti

on

0 1 0 1 0 1 0 1
Learned position

0 1 0 1 0 1 0 1 0 1 0 1 0 1

−1 0 1

0

0.5

1.0

C
um

ul
at

iv
e

fr
ac

tio
n

of
 u

ni
ts

0.17

−1 0 1
0.10

−1 0 1
0.06

−1 0 1
0.06

−1 0 1
LT–PF �delity

0.08

−1 0 1 −1 0 1
0.62***

−1 0 1
0.43***

−1 0 1
0.39***

−1 0 1
0.10*

−1 0 1
0.11*

−1 0 1
0.12

0 Peak

0 Peak

PRE POSTMAZE

LTsa

0

>0.5

P
V

co
rr

el
at

io
n

b

c
Grosmark Giri Miyawaki

0.78***

Fig. 2 | Bayesian LTs during MAZE and offline states. a, PFs of hippocampal 
units pooled across sessions (n = 660 units from 15 sessions and 11 rats) 
alongside Bayesian LTs calculated separately for each behavioural epoch  
(PRE, MAZE and POST) and brain state (ripples in SWS and quiet wake (QW), 
non-ripple SWS, REM and active home cage). Blanks reflect instances without 
neuronal firing for the specified state and epoch (for example, no REM activity 
in PRE). Only tunings learned on the MAZE and POST bear a visual resemblance 
to PFs, particularly those during ripples. b, The LT–PF correlations of the 
population vectors (PVs) across space calculated between PFs and each set of 
LTs in a. c, Cumulative distributions of PF fidelity for each set of LTs in a, defined 
as Pearson correlation coefficients between the LTs and PFs (LT–PF fidelity), 

compared to null distributions obtained from unit-identity shuffles  
(grey, but occluded in many instances). Individual session medians (dots)  
and corresponding interquartile range (horizontal lines) are overlaid and 
colour-coded by dataset (Grosmark, Giri, and Miyawaki). Only tunings learned 
on the MAZE and POST exhibited significant median fidelities compared 
(one-sided) to null distributions obtained from 104 unit-identity shuffles  
(PRE: SWS ripples P = 0.24, quiet wake ripples P = 0.93, non-ripple SWS P = 0.17, 
REM P = 0.53, active home cage P = 0.21; MAZE: θ-oscillations P < 10−4, quiet 
wake ripples P < 10−4; POST: SWS ripples P < 10−4, quiet wake ripples P < 10−4, 
non-ripple SWS P = 0.04, REM P = 0.02, active home cage P = 0.12; see also 
Extended Data Fig. 2). *P < 0.05, ***P < 0.001.
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LTs showed significant PF fidelity (P < 10−4, comparison against 104 
unit-identity shuffles). However, the PF fidelity of units with stable 
LTs was significantly higher compared to that of units with unstable 
LTs in POST. By contrast, in PRE there was no significant difference 
between PF fidelities of stable and unstable units, and neither of these 
subsets showed significantly greater PF fidelity compared to a sur-
rogate distribution obtained by shuffling unit identities (PRE stable 
LTs: P = 0.06; PRE unstable LTs: P = 0.35; POST stable LTs: P < 1 × 10−4; 
POST unstable LTs: P = 2 × 10−4). Next we tested whether the subset 
of ripple events in PRE that featured high replay scores (Extended 
Data Fig. 4 and Supplementary Information) might show better PF 
fidelity. Even so, we found little alignment between maze PFs and 
LTs constructed from these events. These findings demonstrate that 

although some units in PRE exhibit stable learned spatial tunings, these 
tunings do not typically anticipate their future PFs, but rather show a 
broad distribution of alignments with the maze place preferences. By 
contrast, LTs constructed from low-replay-score events from POST 
showed strong fidelity to maze PFs, despite the absence of sequen-
tial trajectories in low-score events (Supplementary Information and 
Extended Data Fig. 4). Thus, events that would typically be classified 
as non-replays in POST maintain representations that are faithful to  
the maze PFs.

Although the stability and fidelity of spatial tunings were significantly 
greater in POST, these features did not last indefinitely. In our data that 
involved several hours of POST, we observed decreases in both the 
fidelity and stability of Bayesian LTs over the course of sleep (Fig. 4). 
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NS, not significant; *P < 0.05; ***P < 0.001.
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The similarity of sleep representations to maze PFs decreased progres-
sively over POST, eventually reaching levels similar to those in PRE. The 
stability of spatial tunings also decreased over this period, indicating 
that at the ensemble level these representations become less coherent 

in later periods of sleep. The dissolution of representational alignment 
with the maze over the course of sleep may reflect an additional impor-
tant aspect of sleep, distinct from that of reactivation and replay23,24.

Stability and retuning during sharp-wave ripples
Recent studies report that PFs drift and frequently remap with repeat 
exposures to the same environment1,10,15,25–27 although it is unclear when 
and how these representational changes emerge. Given that the tun-
ings learned during POST ripples exhibit a diversity of PF fidelities, 
some aligned but others misaligned with maze PFs, we investigated 
whether these representations relate to the future spatial tunings of the 
cells. In three recording sessions from two animals, we re-exposed rats 
back to the maze environment after about 9 h of POST rest and sleep 
(Fig. 5a). We labelled these epochs ‘reMAZE’ and compared the PFs 
across maze exposures with the ripple LTs from the intervening POST 
period (Fig. 5b–d). POST ripple LTs showed significant correlations with 
PFs from both maze exposures, indicating a continuity of representa-
tions across these periods. However, PFs were not identical between 
MAZE and reMAZE (Fig. 5b), illustrating that neuronal representations 
drift and remap in the rat hippocampus1 (see also Extended Data Fig. 5). 
Consistent with our hypothesis that representational remapping in 
POST could account for PF deviations across repeated maze exposures, 
in instances in which we saw reMAZE PFs congruent with MAZE PFs 
(Fig. 5e, top), the POST LTs for those cells showed strong fidelity with 
the maze period. Yet, in instances in which reMAZE PFs deviated from 
the MAZE PFs (Fig. 5e, bottom, and time-evolved examples in Fig. 5h 
and Extended Data Fig. 6), the POST LTs for those units predicted the 
PFs observed during maze re-exposure. Likewise, we observed a sig-
nificant correlation between PF fidelities in POST and the reMAZE–
MAZE similarity (Fig. 5f). These correlations were significant for cells 
with both weak and strong PF stability on the MAZE (Extended Data 
Fig. 5e,f) and were stronger for tunings learned from SWS than from 
quiet wake (Extended Data Fig. 5g,h). To better examine whether ripple 
representations during POST can presage representational changes 
across maze exposures, we carried out a multiple regression analysis 
to test the extent to which reMAZE PFs are explained by MAZE PFs and 
LTs from PRE or POST (first 4 h). We also included the average LTs (over 
PRE and POST) to control for the general deviations of LTs that were not 
specific to any unit, as well as ‘latePOST’ LTs constructed from the last 
4 h of POST before reMAZE (Fig. 5g). This regression demonstrated a 
significant contribution (β-coefficient) for MAZE PFs, as expected, indi-
cating that there is significant continuity in PFs across maze exposures. 
However, it also revealed that POST LTs, but not PRE LTs, affect the PF 
locations in maze re-exposure. Remarkably, we found no significant 
contribution from the latePOST LTs, indicating that our observations 
do not simply arise from temporal proximity between POST sleep and 
the maze re-exposure, or from general dissolution and instability of 
LTs in time (see also Extended Data Fig. 5i), but rather reflect rapid 
changes in representations that are manifested in the initial hours 
of sleep. Inspection of individual LTs (Fig. 5h; see also Extended Data 
Fig. 6) showed multiple instances in which LTs from early POST peri-
ods showed spatial preferences that shifted away from MAZE PFs but 
were better aligned with their future reMAZE tunings. Overall, these 
results demonstrate the critical role of POST sleep in stabilizing and 
reconfiguring the spatial representations of hippocampal neurons 
across exposures to an environment.

Awake ripples and θ-oscillations direct post-maze 
tunings
Our findings thus far indicate that the neuronal firing patterns during 
POST ripples reflect both stable and retuned PF representations follow-
ing the maze. We next investigated the factors that conspire to establish 
these patterns. Two recent studies28,29 indicate that, more so than PF 
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activity, the spike patterns of neurons during waking θ-oscillations 
provide the necessary conditions for establishing the firing patterns 
observed during POST sleep. Other studies, however, suggest that 
awake ripples are a primary mechanistic candidate for generating stable 
representations30,31. Adding further complication, several studies have 
indicated that PRE and POST ripples share overlapping activity struc-
ture14,32,33, suggesting limits on the flexibility of sleep representations. 
To better understand the respective contributions of these different 
factors on the representations in POST sleep, we carried out a multiple 
regression to test the extent to which POST LTs are explained by PRE LTs, 
MAZE PFs, LTs of MAZE θ-oscillation periods and LTs of MAZE ripples 
(Fig. 6a). Remarkably, we found that the β-coefficients for all of these 
regressors were significant. The β-coefficient for MAZE θ-oscillation 
LTs was significant, indicating that waking θ-oscillations, particularly 
at the trough of θ-waves (Extended Data Fig. 7e,f), are important for the 
formation of ensemble representations28,29. Consistent with this, the 
stability of PFs on the MAZE was significantly predictive of the stability 
and fidelity of LTs during POST (Extended Data Figs. 7 and 8). However, 
overall, MAZE ripple LTs had the largest β-coefficient, indicating that 
firing patterns during wake ripples on the maze have the most lasting 
impact on POST ripple activity30,31. Remarkably, the second largest 
β-coefficients were observed for PRE ripple LTs, indicating that next 

to MAZE patterns, patterns configured in PRE also provide an impor-
tant determinant of POST sleep activity32–34. Consistent with this, we 
observed a significant correlation between the PF fidelity in PRE and 
the PF fidelity in POST (Fig. 6b).

These observations suggest that despite the absence of maze tun-
ing in PRE sleep, some cells maintain similar representations between 
PRE and POST. Sleep similarity, which measures the consistency of 
LTs across PRE and POST by assessing the correlation between PRE 
LTs and POST LTs, was significantly correlated with PF fidelity in PRE 
(Fig. 6c); thus, PRE LTs that aligned with maze PFs, presumably by 
chance, maintained those LTs in POST (see also individual examples 
in Extended Data Fig. 3, such as in rat N). By contrast, sleep similar-
ity showed a weak negative correlation with the PF fidelity in POST  
(Fig. 6d), consistent with the notion that these measures respectively 
reflect neuronal rigidity and flexibility. To better understand the dif-
ference between PRE and POST LTs, we separated units into relatively 
‘PRE-tuned’ (PRE PF fidelity > median of shuffles) and ‘PRE-untuned’ 
(PRE PF fidelity < median of shuffles) cells. PRE-tuned cells showed 
generally high POST PF fidelity along with high sleep similarity (Fig. 6e), 
with a positive correlation in these variables in the further subset of 
cells that were significantly PRE-tuned cells relative to unit-identity 
shuffles. By contrast, PRE-untuned cells showed a significant negative 

NREM
REM

WAKE
QW

MAZE POST latePOST

0

1

P
os

iti
on

Unit 25

0

1

P
os

iti
on

Unit 87

0 2 4 6 8 10 12
Time (h)

0

1

P
os

iti
on

Unit 40

Rat U semicircular maze

PRE MAZE POST latePOST

0 2 4 6 8 10 12
Time (h)

0

1

P
os

iti
on

Unit 18
NREM

REM
WAKE

QW

Rat V linear maze

MAZE POST latePOST

0 2 4 6 8 10 12
Time (h)

0

1

P
os

iti
on

Unit 57

Rat V semicircular maze

NREM
REM

WAKE
QW

la
te

P
O

S
T 

LT
re

M
A

Z
E

 P
F

P
O

S
T 

LT
P

R
E

 L
T

M
A

Z
E

 P
F

H
ig

h-
si

m
ila

rit
y 

un
its

Lo
w

-s
im

ila
rit

y 
un

its

Position (normalized)

Peak

−1

0

1

r(
re

M
A

Z
E

 P
F,

 P
O

S
T 

LT
)

a

z
z

z
z
z

z
PRE POSTMAZE reMAZE

ZT 0 ZT 4 ZT 9+ZT –1ZT –2

0 0.5 1.0
POST �delity

–0.5

0

0.5

1.0

M
A

Z
E

–r
eM

A
Z

E
 s

im
ila

rit
y

Rat U semicircular maze
Rat V linear maze
Rat V semicircular maze

reMAZE PFs = c0 + c1 × average LT
               + 1 × PRE LTs 
     + 2 × MAZE PFs 
     + 3 × POST LTs 
     + 4 × latePOST LTs
  

R2 = 0.15***

b c d

e

f

g

h

0

0.2

0.4

R
eg

re
ss

io
n 

co
ef

�c
ie

nt

latePOST

1

16
MAZE PFs reMAZE PFsPOST LTs

0 1
1

16

0 10 1

0

–1 0 1
MAZE–reMAZE

PF similarity

0

0.5

1.0

C
um

ul
at

iv
e

fr
ac

tio
n 

of
 u

ni
ts

0.44***

–1 0 1
POST �delity

0.43***

–1 0 1
reMAZE PF–POST

LT similarity

0.34***
Data Shuf�e

P
 =

 0
.7

8 ***

***

R2 = 0.19***

Peak0

P
 =

 0
.5

8
lat

eP
OST 

LT
s (

4
)

Ave
ra

ge
 L

T 
(c 1

)

POST 
LT

s (
3
)

PRE L
Ts

 ( 1
)

M
AZE P

Fs
 ( 2

)

Int
er

ce
pt (

c 0
)

la
te

P
O

S
T 

LT
re

M
A

Z
E

 P
F

P
O

S
T 

LT
P

R
E

 L
T

M
A

Z
E

 P
F

la
te

P
O

S
T 

LT
re

M
A

Z
E

 P
F

P
O

S
T 

LT
P

R
E

 L
T

M
A

Z
E

 P
F

Peak0

Fig. 5 | POST ripple tunings predict future PFs on maze re-exposure.  
a, Timeline for sessions (n = 3) in which the animal was re-exposed to the same 
maze track (reMAZE) after >9 h from initial exposure (MAZE). We used the  
first 4 h of POST to calculate LTs. ZT, zeitgeber time. b, Cumulative distribution 
of PF similarity between MAZE and reMAZE, compared (one-sided) to null 
distributions obtained from unit-identity shuffles (grey; P < 10−4). c, Cumulative 
distribution of POST PF fidelity (correlation coefficient between POST LTs  
and MAZE PFs; P < 10−4). d, Cumulative distribution of correlation coefficient 
between POST LTs and reMAZE PFs (P < 10−4). In b–d, P values were obtained by 
comparing the median (one-sided) against those from surrogate distributions 
from 104 unit-identity shuffles. e, Example units with high MAZE–reMAZE 
similarity and high POST PF fidelity (top row), or low MAZE–reMAZE similarity 
and low POST PF fidelity (bottom row). The rightmost column shows the 
degree of similarity between the reMAZE PFs and POST LTs for each unit.  
f, MAZE–reMAZE similarity correlated with POST PF fidelity. The best linear  

fit and 95% confidence intervals are overlaid with a black line and shaded grey, 
respectively. g, Multiple regression analysis for modelling reMAZE PFs using 
PRE LTs, MAZE PFs, POST LTs and latePOST LTs (beyond first 4 h) as regressors 
(R2 = 0.19, P < 10−4, c0 = 0, c1 = 0.13, β1 = −0.02, P = 0.77, β2 = 0.31, P < 10−4, β3 = 0.14, 
P < 10−4, β4 = −0.01, P = 0.58; P values were obtained by comparing the R2 and 
each coefficient against surrogate distributions from 104 unit-identity shuffles 
of reMAZE PFs). The overlaid circular markers depict regression coefficients 
obtained by leaving out one session at a time. h, Heat maps of ripple LTs  
for sample units in sliding 15-min windows from different sessions (session 
hypnograms on top, as in Fig. 3; MAZE and reMAZE PFs and LTs during PRE, 
POST and latePOST on the right). Note the rapid emergence of LTs during  
POST that showed alignment with their future PFs during reMAZE. ***P <0.001. 
Drawings of rats in a by E. Ackermann, reproduced from https://github.com/
kemerelab/ratpack/ under a Creative Commons licence CC BY-SA 4.0.
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correlation between sleep similarity and POST fidelity (Fig. 6f); those 
with high sleep similarity were poorly tuned in POST, whereas those 
that reconfigured from PRE to POST showed better fidelity to maze 

PFs. These analyses therefore reveal the contribution of PRE sleep to 
maze representations and POST activities; cells whose representa-
tions are already aligned with maze PFs in PRE maintain those same 
representations in POST, but other neurons exhibit a broad range of 
flexible reconfiguration that is inversely proportional to their rigidity34 
across PRE and POST.

Discussion
The observations of dynamic representations in offline states made 
possible by Bayesian learning have important implications for our 
understanding of how learning and sleep affect the PF representa-
tions of hippocampal neurons. First, we found that neural patterns 
occurring in PRE reconfigure during exposure to a new environment. 
Although ripple events during pre-exposure occasionally scored highly 
for replays, spatial representations were not coherent among active 
neurons during these periods, as cells with very divergent PFs often 
fire within the same time bins (for example, Extended Data Fig. 4d,e). 
These observations suggest that continuous patterns in the decoded 
posteriors of spike trains could emerge spuriously. Consistent with 
this notion, it has been noted that the measures and shuffles used to 
quantify replays inevitably introduce unsupported assumptions about 
the nature of spontaneous activity11,33,35,36. We propose that only for 
those periods and events in which there is strong correspondence 
between Bayesian LTs and neurons’ PFs, can it be considered valid to 
apply Bayesian decoding to offline spike trains11.

Among the brain states we examined, sharp-wave ripples in early 
sleep offered the representations that best aligned with the PFs on the 
maze. These early-sleep representations emerged from a confluence 
of factors, including carryover of firing patterns from pre-maze sleep 
(in both relatively PRE-tuned and PRE-untuned units)33. Most notably, 
however, our analysis revealed a key role in awake activity patterns 
during θ-oscillations, particularly at the trough of θ-waves, which 
corresponds to the encoding phase37,38 (whereas the peak of θ-waves 
corresponds to greater dispersion and prospective exploration39,40), 
and more prominently, those during sharp-wave ripples, in generat-
ing the ensemble coordination that underlies spatial representations 
during sleep. This may indicate a greater similarity in co-firing across 
awake and sleep ripples, compared to that for awake θ-oscillations18 
and sleep ripples, although we note that θ-oscillation and ripple LTs 
both provide strong PF fidelity (Fig. 2). These observations are con-
sistent with the hypothesis that an initial cognitive map of space is 
first laid down during θ-oscillations19,28,29,41, and then stabilized and 
continuously updated by replays during awake ripples based on the 
animal’s (rewarded and/or aversive) experiences on the maze30,31,42–44. 
Once ensembles are established, they reactivate during the early part 
of sleep14,45. However, sleep representations were not always mirror 
images of the maze PFs, and our Bayesian learning approach allowed 
us to measure those deviations for individual neurons. Remarkably, we 
found that these early-sleep ripple representations proved predictive 
of PFs on re-exposure to the maze. On the basis of these observations, 
we propose that representational drift in fact arises rapidly from retun-
ing that takes place during early-sleep sharp-wave ripples rather than 
noisy deviations that develop spontaneously over time. This could 
reflect the possibility that single-trial plasticity rules that give rise to 
new PFs46–48 are also at work when animals go to sleep. Furthermore, 
we conjecture that hippocampal reactivation during sleep does not 
have a passive role in simply recapitulating the patterns already seen 
during learning, but represents a key optimization process generating 
and integrating new spatial tunings with recently formed spatial maps.

Overall, representations remained stable and consistent with the 
maze for hours of sleep in POST, despite the absence of strong sequen-
tial replay trajectories during ripples in POST sleep. Reconciling obser-
vations based on studies that measure neuronal reactivation using 
pairwise or ensemble measures with those that focus on trajectory 
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replays has until now represented a challenge to the field49. Our study 
consolidates these views by demonstrating that faithful representa-
tions, which are consistent with pairwise and ensemble measures of 
reactivation, persist for hour-long durations. However, the trajectories 
produced by these cell ensembles do not necessarily provide continu-
ous high-momentum sweeps through the maze environment50,51, as we 
found high-fidelity spatial tunings even among low-replay-score ripple 
events in post-maze sleep. Instead, trajectories simulated by the hip-
pocampus during sleep ripples may explore pathways that were not 
directly experienced during waking but can serve to better consolidate 
a cognitive map of space42,52. Additionally, we found increasing instabil-
ity and drift in the spatial representations of neurons over the course 
of sleep, indicating that late sleep, like PRE, features more randomized 
activity patterns23,53. It is also worth noting that we found weak align-
ment between maze PFs and learned spatial tunings during REM sleep, 
but that this alignment was best at the trough of θ-waves54,55. It may be 
that under a different behavioural paradigm such as with frequently 
repeated maze exposures56 or salient fear memories57, we might have 
uncovered tunings more generally consistent with dream-like replays 
of maze PFs58. Nevertheless, it is also worth noting that most dreams do 
not simply reprise awake experiences22. The randomization of represen-
tations, as we see during the bulk of REM and late stages of SWS, may 
reflect an important function of sleep, driving activity patterns from 
highly correlated ensembles to those with greater independence23,24,59, 
which may be important for resetting the brain in preparation for new 
experiences13.

In sum, the Bayesian learning approach provides a powerful means 
of tracking the stability and plasticity of representational tuning curves 
of neurons over time, which provides insights into how ensemble 
patterns form and reconfigure during offline states. Provided a suf-
ficient number of units are sampled (Extended Data Fig. 1), a similar 
approach can be readily extended to investigate the dynamics of inter-
nally generated representations in other neural systems during both 
sleep and awake states, including in rehearsal, rumination or episodic  
simulation52,60.
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Methods

Behavioural task and data acquisition
We trained four water-deprived rats to alternate between two water 
wells in a home box to which they had previously been habituated. 
Owing to the large number of recorded units obtained from each 
animal, such sample sizes were chosen as typical for demonstrating 
consistency among subjects. The selections of animals and recorded 
hippocampal units were essentially random, and analyses and data col-
lection were performed by different personnel. The custom analyses 
and sequential design prevented investigators from remaining blind 
to the group allocations. Water rewards during the alternation were 
delivered through water pumps interfaced with custom-built Arduino 
hardware. After the animals learned the alternation task, they were sur-
gically implanted under deep isoflurane anaesthesia with 128-channel 
silicon probes (eight shanks, Diagnostic Biochips) either unilaterally 
(one rat) or bilaterally (three rats) over the dorsal hippocampal CA1 
subregions (anterior–posterior: −3.36 mm, medial–lateral: ±2.2 mm). 
Following recovery of the rats from surgery, the probes were gradually 
lowered over a week to the CA1 pyramidal layer, which was identified 
by sharp-wave-ripple polarity reversals and frequent neuronal firing. 
After recording stability was ensured, the animals were exposed to 
new linear tracks during one (three rats) or two (one rat) behavioural 
sessions (in total five sessions from the four rats). During each session, 
the implanted animal was first placed in the home box (PRE, about 
3 h) with ad libitum sleep (during the dark cycle). Then the animal was 
transferred to a new linear track with two water wells that were mounted 
on platforms at either end of the track (MAZE, about 1 h). After running 
on the linear track for multiple laps for water rewards, the animal was 
returned to the home box (aligned with the start of the light cycle) for 
another ≈10 h of ad libitum sleep (POST). In four of these sessions, 
following POST the rats were re-exposed to the same linear track for 
another ≈1 h of running for reward (reMAZE).

Wideband extracellular signals were recorded at 30 kHz using an 
Open Ephys board61 or an Intan RHD recording controller during each 
session. The wideband activity was high-pass-filtered with a cutoff 
frequency of 500 Hz and thresholded at five standard deviations above 
the mean to extract putative spikes. The extracted spikes were first 
sorted automatically using SpykingCircus62, followed by a manual 
pass-through using Phy63 (https://github.com/cortex-lab/phy/). Only 
units with less than 1% of the total number of spikes in their refractory 
period (on the basis of the units’ autocorrelograms) were included in 
further analysis. Putative neurons were classified into pyramidal and 
interneurons on the basis of peak waveform shape, firing rate and 
interspike intervals64,65. For analysis of local field potentials (LFPs, 
0.5–600 Hz), signals were filtered and downsampled to 1,250 Hz.

The animal’s position was tracked using an Optitrack infrared cam-
era system (NaturalPoint) with infrared-reflective markers mounted 
on a plastic rigid body that was secured to the recording headstage. 
Three-dimensional position data were extracted online using the 
Motive software (version 2.1.1), sampled at either 60 Hz or 120 Hz, 
and later interpolated for aligning with the Ephys data. Although we 
attempted to track the animal’s position during each entire session, 
including in the home cage, the cage limited visual access from our fixed 
cameras. Additionally, in one session the position data for reMAZE was 
lost during the recording. All animal procedures followed protocols 
approved by the Institutional Animal Care and Use Committees at the 
University of Michigan and conformed to guidelines established by 
the United States National Institutes of Health.

These data constituted the Giri dataset used in our study. We also took 
advantage of previously published data described in detail in a previ-
ous report14. These data consisted of recordings of unit activity and 
LFPs from the rat hippocampus CA1 region carried out using Cheetah 
software (version 5.6.0) on a Neuralynx DigitalLynx SX data-acquisition 
system, with PRE rest and sleep, exposure to a new MAZE, and POST rest 

and sleep: the Miyawaki dataset (three rats, five sessions; PRE, MAZE, 
POST, each about 3 h)14,23 and the Grosmark dataset (four rats, five 
sessions; PRE, and POST, each about 4 h and MAZE, about 45 min)34,66. 
Vectorized rat images used in the manuscript were provided by E. Ack-
ermann (https://github.com/kemerelab/ratpack/).

Units
In all of these data, we quantified the stability of units across sleep 
epochs; PRE and POST in Miyawaki and Grosmark sessions, and PRE, 
POST and latePOST in the Giri dataset (Extended Data Fig. 8). Consist-
ency in isolation distance and firing rate over the sleep epochs were 
used as stability measures23. Units with isolation distance >15 and fir-
ing rate that remained above 33% of the overall session mean during 
all epochs were considered stable. For all of the analyses in the paper, 
we required stability during PRE and POST, but for reMAZE prediction 
analyses (Fig. 5 and Extended Data Fig. 5), we required stability across 
PRE, POST and latePOST. See Supplementary Tables 1–3 for further 
details of each session. These data are available upon request from 
the corresponding author.

PF calculations
To calculate PFs, we first linearized the position by projecting each 
two-dimensional track position onto a line that best fitted the average 
trajectories taken by the animal over all traversals within each session. 
The entire span of the linearized position was divided into 2-cm posi-
tion bins and the spatial tuning curve of each unit was calculated as 
occupancy-normalized spike counts across the linearized position 
bins. We considered only pyramidal units with MAZE PF peak firing 
rate > 1 Hz for further analyses, except for those in Fig. 5h and Extended 
Data Fig. 3, in which all stable pyramidal units were included.

PF stability. In each session, the MAZE epoch was divided into six blocks 
with matching number of laps and then the PFs were separately calcu-
lated for each block. Each unit’s PF stability was defined as the median 
correlation coefficient of PFs across every pair of blocks.

Spatial information. The spatial information67 was calculated as the 
information content (in bits) that each unit’s firing provides regarding 
the animal’s location:

∑ P R R R Rinformation content = ( / )log ( / )i i i2

in which Ri is the unit’s firing rate in position bin i, R is the unit’s overall 
mean firing rate, and Pi is the probability of occupancy of bin i.

LFP analysis and brain state detection
We estimated a broadband slow-wave metric using the irregular- 
resampling auto-spectral analysis approach68, following code shared 
by D. Levenstein and the Buzsaki Lab (https://github.com/buzsakilab/
buzcode). This procedure allows calculation of the slope of the power 
spectrum that was used to detect slow-wave activity. The slow-wave 
metric for each session followed a bimodal distribution with a dip 
that provided a threshold to distinguish SWS from other periods.  
A time–frequency map of the LFP was also calculated in sliding 1-s win-
dows, step size of 0.25 s, using the Chronux toolbox (version 2.12)69. To 
identify high θ-oscillation periods, such as during active wake or REM 
sleep23,70, the θ-oscillation/non-θ-oscillation ratio was estimated at each 
time point as the ratio of power in θ-oscillations (4–9 Hz in home cage 
and 6–11 Hz on the linear track, as we typically observe a small shift in 
θ-oscillations between these periods70) to a summation of power in the 
δ-oscillation frequency band (1–4 Hz) and the frequency gap between 
the first and second harmonics of θ-oscillations (10–12 Hz during home 
cage awake and REM epochs and 11–15 Hz during MAZE). To calculate 
the ripple power, multichannel LFP signals were filtered in the range 
of 150–250 Hz. The envelope of the ripple LFP was calculated using the 

https://github.com/cortex-lab/phy/
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Hilbert transform, z-scored and averaged across the channels. Only 
channels with the highest ripple power from each electrode shank 
were used in the averaging.

Detection of ripple events
For each recording session, multi-unit firing rates (MUA) were cal-
culated by binning the spikes across all recorded single units and 
multi-units in 1-ms time bins. Smoothed MUA was obtained by convolv-
ing the MUA with a Gaussian kernel with σ = 10 ms and z-scoring against 
the distribution of firing rates over the entire session. Ripple events 
were first marked by increased MUA that crossed 2z and the bounda-
ries were then extended to the nearest zero-crossing time points on 
each side. The ripple events that satisfied the following criteria were 
considered for further analysis: duration between 40 and 600 ms; 
occurrence during SWS with a θ-oscillation/δ-oscillation ratio < 1 and 
ripple power > 1.s.d. or during quiet wake with ripple power > 3 s.d. of 
the mean; and concurrent speed of the animal below 10 cm s−1 (when 
available). All ripple events were subsequently divided into 20-ms time 
bins. The onsets and offsets of the events were adjusted to the first 
time bins with at least two pyramidal units firing. We split ripples with 
silent periods >40 ms into two or more events. Histograms of ripple 
durations are reported in Extended Data Fig. 2d.

Bayesian LTs
Consider the following. We recorded from a set of n independent neu-
rons during a maze session and parametrized their spatial tuning 
curves f x f x( )… ( )n1  for positions x on the maze. However, subsequent 
to the session, we lose the tuning curve for one of the neurons, neuron 
i. Alternatively, maybe this neuron was inaccessible during the maze 
session, because of faulty electronics, but we regain access to it in 
sleep after the maze. We consider whether there is any way that we can 
learn the tuning curve p x(spikes )i∣  of neuron i, using information 
gleaned from firing activity of the other neurons over some period  
of time T.

Although this may initially seem impossible, if the neurons are all 
indeed conditionally dependent on position x, and if some internal 
estimate, thought or imagination of x continues to drive the spiking 
activity of these neurons, then with enough observation it should 
be possible to extract the tuning curve through Bayesian learning. 
Intuitively, if neuron i, has a preference for some position x, then 
whenever the animal is thinking of x, even if it is no longer on the maze, 
the neuron i should fire alongside all of the other neurons that have 
a similar preference for x. However, if neuron i fires randomly with 
different neurons, then it cannot be said to have any particular spatial  
tuning for x.

In this paper, we are concerned with estimating tuning curves on the 
basis of internal representations of position, rather than an external 
marker. Our motivating hypothesis is that during the periods of estima-
tion, even though some neurons may change their tuning functions, 
if the ensemble largely maintains its internal consistency then it is 
informative to measure the tuning curves of individual neurons during 
these periods. Bayesian decoding has been often used to analyse the 
position information encoded by the ensemble during offline periods. 
However, it relies on the assumption that the position preference of 
neurons does not change over time and experience, which is known 
to be false for hippocampal neurons.

We model hippocampal neurons as conditionally independent Pois-
son random variables with firing rates that vary over discretized spatial 
bins. When an animal explores the maze the firing rate parameters 
(that is, tuning curves) of observed neurons, f x( )j i∀ ≠

, are typically 
calculated using the occupancy-normalized spike-triggered average 
position:

∑
∑
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in which the indicator function � x x( = ) = 1k  during periods in which  
the animal is in position bin xk and x x( ≠ ) = 0k�  otherwise. In this work, 
we also account for directional tuning curves, as discussed below.  
We define the LT curve for neuron i as g x x( = )k , which is the rate para-
meter of the distribution ∣p s x x( = )i k , for which we may have some prior 
beliefs pg x( )

.
The likelihood of the observed data during the LT period can be 

described as
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in which we have taken the tuning curves of the other neurons as known 
parameters. Using the Bayes rule, we can directly formulate the like-
lihood of g x( ) from this equation, and then calculate a maximum- 
likelihood estimate. Note that because the position is considered unob-
served during our period of interest, it does not enter into this equation. 
However, we can introduce it:
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in which, in the last line, we have taken advantage of the independence 
of the position and the activity of the other neurons on the parameters. 
In Bayesian estimation, the prior, pg x( )

, allows for the integration of 
other information into the estimate. For example, we could assume a 
bias towards a previous measurement that is refined over time or 
choose a prior such that the shape of g(x) reflects general previous 
observations of the tuning curves of neurons during behaviour, or 
more generally one that enforces smoothness over position71. In this 
work, we assume a general uninformative prior. In such a case, it can 
be shown (see the section entitled Bayesian LT with uninformative 
prior) that the maximizing values for the tuning curve are:
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Examining this equation, we see that it is quite similar to the normal 
occupancy-normalized tuning curve estimate, except that we now have 
the posterior distribution of x rather than binarized counts of occupancy. 
Moreover, note that this is not actually a closed-form solution, as the 
parameters appear on both sides of the equality. To avoid an iterative 
solution, we approximate ∣ ∣p x x s s g x p x x s( = , , ( )) ≈ ( = )t

k i j i
t t

k j i
t

∀ ≠ ∀ ≠ , 
which is sensible in the case of large numbers of neurons, as the posi-
tion dependency on any single neuron is small. Thus, we arrive at our 
estimator for the LT of neuron i.
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Finally, note that the denominator here represents the estimated 
average occupancy during the period in which we are calculating LTs. 
For the illustrations and analyses in which LTs are evolved over very 
short time windows (for example, for 15-min sliding windows in Fig. 4 
and elsewhere, defined as t T∈ ~), we used the estimated average occu-
pancy over the entirety of such periods in the recording (for example, 
ripples over all of POST in Fig. 4) in the denominator. Thus, for these 
short windows:
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For the tuning curves of the observed neurons, as most of the ses-
sions (16 out of 17) consisted of two running directions on the track, 
we first calculated the posterior joint probability of position and travel 
direction and then marginalized the joint probability distribution over 
travel direction72:

∣p x d s p s s s s s x d( , ) ∝ ( , , …, , , …, , ) (8)j i i i n∀ ≠ 1 2 −1 +1

in which d signifies the travel direction. With the assumption of inde-
pendent Poisson-distributed firings of individual units conditioned 
on maze position and direction6,72, we have:

∏p x d s f x d τ( , ) ∝ ( ( , ) ) e (9)j i
j i

j
s f x d τ

∀ ≠
≠

− ( , )j j∣

In equation (9), f x d( , )j
 characterizes the mean firing rate of unit j 

at position bin x and direction d and τ is the bin duration used for decod-
ing, which was chosen to be 20 ms in our analyses. By marginalizing 
the left-hand side of equation (9) over direction d, we obtain

∑p x s p x d s( ) ∝ ( , ) (10)j i
d

j i∀ ≠ ∀ ≠∣ ∣

which we have used above to calculate ∣p x x s( = )t
k j i

t
∀ ≠  in each time  

bin.
We note that though this approach relies on the PFs of neurons meas-

ured on the maze to calculate the posterior probability of x, a given 
neuron’s LT does not depend on its own PF but is learned on the basis 
of the coherence of its firing with the other neurons in the ensemble. A 
neuron that fires mostly randomly with other neurons in a sample epoch 
will produce a spatial LT that will be diffuse across locations, whereas 
a neuron that fires only with neurons that encode a specific segment 
of the maze will produce an LT that represents that same segment.  
Critically, if the LT curve of a neuron learned from activity during an 
epoch does not match its maze place preference, then it cannot rea-
sonably be said to ‘encode’ that same location during this epoch. The 
LT therefore allows us to examine for which time periods and which 
neurons we can use Bayesian decoding following more standard  
methods11,72.

This approach can be readily generalized to other neural systems for 
which tuning curves have been recorded, provided a sufficiently large 
number of units are recorded to sample the stimulus space. In the case 
of one-dimensional MAZE locations and PFs, we find that >40 simulta-
neously recorded units are needed to reliably obtain high-fidelity PFs 
(Extended Data Fig. 1). For larger or multiple environments, a greater 
number of units may be needed, as insufficient neuronal sampling 
or inherent preferences in the dataset (for example, for reward loca-
tions) may result in some biases across the stimulus space. Signifi-
cance testing should therefore be carried out against unit-identity 
shuffles across available units. Before evaluating offline LTs, vali-
dation can be carried out against online data to confirm adequate  
sampling resolution.

Additional restrictions to avoid potential confounds from unit wave-
form clustering. To avoid potential confounds from spike misclassi-
fication of units detected on the same shank73, we applied additional 
inclusion requirements for LT calculations. We determined the L ratios74 
between unit i and each other unit recorded on the same shank, yield-
ing the cumu lative probability of the other units’ spikes belonging to 
unit i. As the range of L ratio depends on the number of included chan-
nels, to provide a consistent threshold for all datasets, the L ratio for 
each pair was calculated using the four channels that featured the high-
est spike amplitude difference between each pair of units. Only units 
with L ratio > 10−3 (Extended Data Fig. 3) were used to calculate LTs for 
each cell.

Fidelity of the LTs across epochs
To quantify the degree to which tuning curves in LTs or PFs relate across 
epochs, we used a simple Pearson correlation coefficient across posi-
tion bins. We obtained consistent results with the Kullback–Leibler 
divergence (not shown). The median for each epoch was compared 
against a surrogate distribution of such median values obtained by 
shuffling (104 times) the unit identities of the PFs within each session. 
Thus, we tested against the null hypothesis that LTs in each session may 
have trivial non-zero correlations with PFs. For each epoch we obtained 
P values based on the number of such surrogate median values that were 
greater than or equal to those in the original data. With the exception of 
the analysis in Fig. 2, only units that participated in >100 ripple events 
in PRE or POST were included in the analysis.

LT stability and dynamics
We further evaluated the dynamics of LTs across time in non-overlapping 
15-min windows (except for illustration purposes alone, in time-evolved 
LTs in Figs. 3a, 4a and 5h and Extended Data Fig. 3, in which we used 
overlapping 15-min windows with a 5-min step size). A unit’s LT stability 
was defined as the median Pearson correlation coefficient between that 
unit’s LTs in all different pairs of time windows within a given epoch. 
Thus, units that had stable and consistent LTs across an epoch yield 
higher correlations in these comparisons than those with unstable 
LTs. These unit LT stability values were z-scored against a null distri-
bution of median correlation coefficients based on randomizing the 
LTs’ unit identities within each 15-min time window (1,000 shuffles). 
Normalized stability correlation matrices in Fig. 4c were calculated by 
z-scoring each correlation coefficient against a surrogate distribution 
based on shuffling the LTs’ unit identities. To investigate the changes in 
POST LT stability over time in Fig. 4c, we calculated LT stability within 
overlapping 2-h blocks with a step size of 1 h.

Ripple event replay scores
The posterior probability matrix (P) for each ripple event was calculated 
on the basis of previously published methods. Replays were scored 
using the absolute weighted correlation between decoded position 
(x) and time bin (t)36:
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m x P
P x

P
m t p

P t

P
( ; ) =

∑ ∑

∑ ∑
( ; ) =

∑ ∑

∑ ∑
(13)

i j ij j

i j ij

i j ij i

i j ij

Each replay score was further quantified as a percentile relative to 
surrogate distributions obtained by shuffling the data according to 
the commonly used within-event time swap, in which time bins are 
randomized within each ripple event72. We preferred this method over 
the circular spatial bin shuffle (or column-cycle shuffle72) as it preserves 
the distribution of peak locations across time bins within each event 
(see also related discussion in ref. 33). Each ripple event was assigned 
to one of four quartiles on the basis of the percentile score of the  
corresponding replay relative to shuffles.

PF overlap with decoded posterior
For the analysis displayed in Extended Data Fig. 4, a Pearson correlation 
coefficient was calculated between the PF of each unit firing (partici-
pating) in a time bin and the posterior probability distribution for that 
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bin based on the firings of all units. The mean posterior correlation of 
PFs was calculated over all participating units. As this mean posterior 
correlation might be inflated when there is a low number of active units, 
for each time bin with n participating units we generated a surrogate 
distribution of mean posterior correlation by randomly selecting n 
units from the population recorded in that session. Then, the mean 
posterior correlation in the original data was z-scored against the cor-
responding surrogate distribution for n.

θ-oscillation LT variations with oscillation characteristics
We investigated how LTs during periods dominated by θ-oscillations, 
such as MAZE active running periods and REM periods, were influ-
enced by oscillation characteristics, such as power, phase and fre-
quency. θ-oscillation power was determined by computing the power 
spectrum of the LFP recorded from the channel exhibiting maximum 
ripple power (typically in the pyramidal layer) in 2-s windows with 
1-s overlap, using the Chronux toolbox (version 2.12) and averag-
ing the power within the θ-oscillation frequency range (5–10 Hz). 
θ-oscillation frequency within each window was identified as the 
frequency exhibiting peak power within the θ-oscillation frequency 
range. θ-oscillation phase was obtained by band-pass filtering the LFP 
within θ-oscillation frequency range and computing the phase of the 
analytic signal derived from the Hilbert transform of the θ-filtered 
LPF. θ-oscillation periods were divided into 20-ms time bins, and 
θ-oscillation power, frequency and phase were calculated within 
each bin using linear interpolation. Time bins were then categorized 
into low versus high θ-oscillation power or frequency according to 
the medians of the corresponding distributions across all time bins 
within each session. To compensate for potential misalignment 
between unit and LFP signals, we first aligned the instantaneous 
phase signal such that the θ-oscillation trough corresponded with 
maximum population firing across all units. Subsequently, time bins 
were divided into trough (−π/4–π/4), ascending (π/4–3π/4), peak 
(3π/4–5π/4) and descending (5π/4–7π/4) θ-phases. The LTs were  
calculated separately for each subset of phases, as depicted in 
Extended Data Figs. 2f and 7e. REM periods were restricted to inter-
vals lasting at least 6 s to minimize false positives. For analyses of 
MAZE active running periods, θ-oscillation periods were restricted 
to intervals in which the animal’s velocity exceeded 10 cm s−1 and we 
matched the number of firing bins for each unit across all data splits 
to control for possible differences. LT variations with respect to ani-
mal’s velocity during MAZE periods were determined by calculating 
LTs for distinct subsets of time bins, divided according to the median 
of the velocity distribution across all MAZE θ-oscillation time bins 
within each session.

Multiple regression analyses
To examine the extent to which a spatial tuning curve (LT or PF) within 
a given epoch was affected by the tuning curves in other epochs, we 
carried out multiple regression analyses. For example, we modelled 
POST LTs using:

(14)
c c β β

β θ β

POST LTs = + × average LT + × PRE LTs + × MAZE PFs

+ × MAZE −oscillation LTs + × MAZEripple LTs
0 1 1 2

3 4

and reMAZE PFs using

c c β

β β

reMAZE PFs = + × average LT + × PRE LTs

+ × MAZE PFs + × POST LTs
(15)

0 1 1

2 3

The dependent variables and regressors were calculated over all posi-
tion bins from all units. The average LT in the analyses was calculated 
by averaging all unit LTs over PRE and POST. The c-terms and β-terms 
are the regression coefficients.

To test the statistical significance of the regression R2 values and 
each regression β-coefficient, we compared these against distri-
butions of surrogates (104 shuffles) calculated by randomizing the 
unit identities of the dependent variable’s tuning curves. For  
each coefficient and R2 value, we obtained a P value based on the num-
ber of surrogates that were greater than or equal to those in the  
original data.

Bayesian LT with uninformative prior
We will define s j i∀ ≠  as the vector of spike observations for all neurons 
except the ith, and s j i

t
∀ ≠  is the observation at time t. p x s( )j i∀ ≠∣  is the 

posterior probability distribution of positions as already defined  
(calculated using the firing rate estimates from PFs using a uniform 
prior over position).

Define our observations at time t, D s s= [ ; ]t
j i

t
i
t

∀ ≠ . Assume that the 
neuron of interest exhibits Poisson spiking over the spatial bins xm, 
with parameter gm; in other words, p s x x g( | = ) ~ Poisson( )i m m , where  
~ indicates ‘distributed as’. Thus, our estimation problem is specifically 
to find the best estimates of the m parameters, g g= { }m .

In general, the Bayesian data likelihood is found using the Bayes 
rule:

p g D
p g p D g

p D
p g p D g( ) =

( ) ( )
( )

∝ ( ) ( )∣
∣

∣

Thus, for all of our observations, we can write:
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in which, in the last line, we have taken advantage of the conditional 
independence of the spiking s s, …, n1  of the neurons in each time bin 
conditioned on the position x t in that bin, and the activity of the other 
neurons, on the parameters.

∏ ∑p g D p g p s x x g p s x x p x x( | ) ∝ ( ) ( | = , ) ( | = ) ( = )
t m

i
t t

m j i
t t

m
t

m∀ ≠

To find the best parameters, we will maximize the logarithm of this 
quantity by taking the derivative with respect to each g g= { }k  and set-
ting it equal to zero.

∣ ∣∏ ∑g
g

p g p s x x g p s x x p x xmax →
∂

∂
log( ( ) ( = , ) ( = ) ( = )) = 0k

k t m

t
m j i

t t
m

t
m∀ ≠i

t

We will assume that our neurons are Poisson distributed; that is:

p s x x g s g( = , ) = Poisson( ; )i
t t

k i
t

k

Note that the derivative with respect to the parameter gk  can be 
expressed as

g
s g s g s g

∂
∂

Poisson( ; ) = ( / − 1)Poisson( ; )
k

i
t

k i
t

k i
t

k



Thus, we have:
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To bias the results as little as possible, we will use a flat prior p g( ) = 1k  
for g > 0k  (note that this is an ‘improper’ prior as it does not integrate 
to 1, but the posterior is still proper75). Another alternative might be to 
shape the parameter distribution using a conjugate prior with param-
eters determined using information from the behavioural period or 
from the statistics of the other neurons. With an uninformative prior,

∑g s g p x x s s gmax → ( / − 1) ( = , , ) = 0k
t

i
t

k
t

k i j i
t

∀ ≠∣

Rearranging this, we write:
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This can be interpreted as a normalized spike-triggered average 
posterior probability distribution over space, triggered on the spikes 
of the neuron whose LT we are calculating.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The Grosmark dataset is publicly available at https://doi.org/10.6080/
K0862DC5. The Miyawaki and Giri datasets are available upon request 
from the corresponding author.

Code availability
Custom-written MATLAB and python code supporting this study is 
available at https://github.com/diba-lab/Maboudi_et_al_2022.
 

61. Siegle, J. H. et al. Open Ephys: an open-source, plugin-based platform for multichannel 
electrophysiology. J. Neural Eng. 14, 045003 (2017).

62. Yger, P. et al. A spike sorting toolbox for up to thousands of electrodes validated with 
ground truth recordings in vitro and in vivo. eLife 7, e34518 (2018).

63. Rossant, C. et al. Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19,  
634–641 (2016).

64. Bartho, P. et al. Characterization of neocortical principal cells and interneurons  
by network interactions and extracellular features. J. Neurophysiol. 92, 600–608  
(2004).

65. Petersen, P. C., Siegle, J. H., Steinmetz, N. A., Mahallati, S. & Buzsaki, G. CellExplorer:  
a framework for visualizing and characterizing single neurons. Neuron 109, 3594–3608 
(2021).

66. Grosmark, A. D., Long, J. D. & Buzsáki, G. Recordings from hippocampal area CA1, PRE, 
during and POST novel spatial learning. CRCNS.org https://doi.org/10.6080/K0862DC5 
(2016).

67. Skaggs, W., McNaughton, B. & Gothard, K. An information-theoretic approach to 
deciphering the hippocampal code. In Advances in Neural Information Processing 
Systems 5 (eds Hanson, S., Cowan, J. & Giles, C.) 1030–1037 (Morgan Kaufmann 
Publishers Inc., 1992).

68. Wen, H. & Liu, Z. Separating fractal and oscillatory components in the power spectrum of 
neurophysiological signal. Brain Topogr. 29, 13–26 (2016).

69. Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S. & Mitra, P. P. Chronux: a platform for 
analyzing neural signals. J. Neurosci. Methods 192, 146–151 (2010).

70. Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).
71. Park, M., Weller, J. P., Horwitz, G. D. & Pillow, J. W. Bayesian active learning of neural firing 

rate maps with transformed Gaussian process priors. Neural Comput. 26, 1519–1541 
(2014).

72. Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended 
experience. Neuron 63, 497–507 (2009).

73. Quirk, M. C. & Wilson, M. A. Interaction between spike waveform classification and 
temporal sequence detection. J. Neurosci. Methods 94, 41–52 (1999).

74. Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K. & Redish, A. D. Quantitative 
measures of cluster quality for use in extracellular recordings. Neuroscience 131, 1–11 
(2005).

75. Murphy, K. P. Machine Learning: a Probabilistic Perspective (MIT Press, 2012).

Acknowledgements We thank A. Amarasingham, T. Abel, G. Mashour, M. van der Meer, N. Kinsky, 
P. Hale and R. Wahlberg for comments on the manuscript. This work was financed by the US 
National Institute of Neurological Disorders and Stroke (R01NS115233) and the US National 
Institute of Mental Health (R01MH117964).

Author contributions K.D. and K.M. conceived the analytical approach. B.G. conceived and 
carried out sleep and reMAZE experiments for the Giri dataset. H.M. carried out maze and 
sleep recordings for the Miyawaki dataset. K.M. carried out all analyses. K.D. supervised the 
research with input from C.K. K.D. and K.M. wrote the manuscript with input from C.K. and H.M.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-07397-x.
Correspondence and requests for materials should be addressed to Kamran Diba.
Peer review information Nature thanks Antonio Fernandez-Ruiz, John Widloski and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer 
reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.6080/K0862DC5
https://doi.org/10.6080/K0862DC5
https://github.com/diba-lab/Maboudi_et_al_2022
https://doi.org/10.6080/K0862DC5
https://doi.org/10.1038/s41586-024-07397-x
http://www.nature.com/reprints


Article

PRE
POST

Giri
Miyawaki 

Grosmark

SWSQW REM
0

0.2

0.4

0.6

0.8

1
Po

st
er

io
r a

ve
ra

ge
 G

in
i c

oe
ffi

ci
en

t

-1

-0.5

0

0.5

1

LT
 fi

de
lit

y
LL R2 = 0.00 

0 0.2 0.4 0.6 0.8
1

Posterior average
Gini coefficient

-1

-0.5

0

0.5

1

LT
 fi

de
lit

y
LL R2 = 0.01**

ns*** ***
***

***

0 50 100
Number of ripples

-0.2

0

0.2

0.4

0.6

0.8

1

LT
 fi

de
lit

y
LL

Significant
Non-significant

g

Rat A - linear maze

0 40 80 120
Number of units

-1

-0.5

0

0.5

1

LT
 fi

de
lit

y
LL

0 50 100
Number of ripples

-0.2

0

0.2

0.4

0.6

0.8

1

LT
 fi

de
lit

y
LL

0 40 80 120 160
Number of units

-1

-0.5

0

0.5

1

LT
 fi

de
lit

y
LL

0 100 200
Number of ripples

-0.2

0

0.2

0.4

0.6

0.8

1

LT
 fi

de
lit

y
LL

0 40 80
Number of units

-1

-0.5

0

0.5

1

LT
 fi

de
lit

y
LL

Rat U Rat R

PRE

POST

a

b

c d

**
ns

p < 0.05
p > 0.05*
p < 0.01

*** p < 0.001

-1

-0.5

0

0.5

1

LT
 fi

de
lit

y
LL

QW SWS

****** ***

QW SWS REM QW SWS REM

e f

0

1000

2000

3000

4000

N
um

be
r o

f f
iri

ng
 ti

m
e 

bi
ns

0

2

4

6

8

10

M
ea

n 
nu

m
be

r o
f c

of
iri

ng
 u

ni
ts

−1 0 1
0.25***

−1 0 1
0.33***0

0.5

1

C
um

ul
at

iv
e

fra
ct

io
n 

of
 u

ni
ts

g SWS QW

LT PF fidelity

Learned position

Fi
el

d 
po

si
tio

n
0

>0.5

PV
 c

or
re

la
tio

n

0 1 0 1
0

1

Extended Data Fig. 1 | The factors that impact learned tunings. In three 
sample maze sessions we calculated LTs by (a) randomly varying the number 
and subset of awake ripple events, or (b), varying the number of units included, 
and tested the effects on the quality of LTs, as reflected by PF fidelity. Samples 
that yielded with significant median LT fidelities (r(LT, PF), p < 0.01 relative to 
unit ID shuffle) are represented in gray dots, whereas non-significant samples 
are indicated by empty circular markers. The median LT fidelity increases as 
more ripples and units are incorporated. Based on these results, we estimate 
that approximately 40 simultaneously recorded units are needed to obtain 
quality LTs, whereas the minimum number of ripples could vary across 
sessions, with as few as five ripples needed to generate LTs with significant PF 
fidelities in some cases. (c) The distribution of PF fidelities corresponding to 
quiet wake (QW), or slow-wave sleep (SWS), when the number of firing time bins 
utilized for calculation of each unit’s LT were matched between PRE and POST 
via subsampling the firing time bins, indicated significant difference between 
PRE and POST within each event category (QW: P = 2.0 × 10−35; SWS: P = 2.7 × 10−43, 
two-sided Wilcoxon signed-rank tests with no correction for multiple 
comparisons). (d) Left, the distribution of the mean sharpness of the posterior 
probability distribution over position (quantified by the Gini coefficient, 
see Methods) used in LT calculations for units in each event category. There was 
a significant effect of event category (p = 1.5 × 10−151, Friedman’s test) with both 
QW and SWS had higher median Gini coefficients (i.e. sharper posteriors) than 

REM (QW versus REM: P <  4.3 × 10−98; SWS versus REM: P = 3.8 × 10−97, two-sided 
WSRT with no correction for multiple comparisons). The overlaid lines  
(dots for sessions with no REM in PRE) connect median values corresponding  
to individual sessions. PRE and POST also exhibited slightly different Gini 
coefficients during QW (P = 5.0 × 10−11) or REM (P = 8.6 × 10−11) but not during 
SWS (P = 0.95), though the effect sizes of the difference were small (QW: 0.20; 
SWS: 0.04; REM: −0.29). Right, the correlation between the PF fidelity and 
posterior Gini coefficient for PRE (top) and POST (bottom) by pooling across all 
event categories (best linear fits in black with 95% confidence intervals in 
shaded gray) was weak in both PRE and POST, and significant during POST 
(P = 0.004) but not PRE (P = 0.72), indicating that the sharpness of posteriors 
was not a major driver of differences between PRE and POST LTs. (e) The 
distributions of the number of bins with spikes used to calculate LTs in QW 
ripples, SWS ripples, and REM sleep during PRE or POST epochs in Fig. 2a.  
The overlaid lines (dots for sessions with no REM in PRE) connect median values 
corresponding to individual sessions. (f) The distributions of the average 
number of units that cofired with the learning unit when calculating LTs during 
each epoch. (g) Population vector correlation matrices (top) and cumulative 
distributions of PF fidelity (bottom) for SWS and QW LTs during POST, 
recalculated following subsampling of each unit’s SWS and QW firing bins to 
match the number of firing bins during the corresponding REM periods.
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Extended Data Fig. 2 | The impact of sleep oscillations on LT quality. (a) Top 
row, the fraction of each sleep state in 2-minute sliding windows during POST 
from a sample session. Middle row, the power of δ-oscillations (1–4 Hz) in 
2-second sliding windows (gray) across POST. Filled and empty dots indicating 
SWS ripple events with high (≥ median) or low (< median) δ-oscillation power 
for that session. Bottom row, similar to the middle panel, but for spindle power 
(9–18 Hz) calculated in 500 ms sliding windows (gray). (b) In POST, but not PRE, 
SWS ripples separated into those occurring during high vs. low δ-oscillation 
power (left) and high vs. low spindle power (middle) resulted in higher fidelity 
when the oscillations were present at higher power. When we split each 2-s 
δ-oscillation window into two 500 ms windows with higher and two 500 ms 
windows with lower spindle power, to isolate the impact of spindles at each 
level of δ-oscillation power, we observed higher fidelity LTs for ripples that 
occurred during the high spindle power subset. (c) LTs calculated based on 
events with high (≥ median) ripple (120–250 Hz) amplitude, multi-unit firing 
rate, unit participation rate, or ripple event duration, all exhibited significantly 
higher PF fidelity compared to those with low (< median) values in POST. In all 
comparisons in (b) and (c), LTs were calculated based on matched number  
of bins and p-values (inset) were derived from Wilcoxon signed-rank tests.  
(d) Distributions of the duration of ripple events obtained from each session  
in each dataset. (e) The distribution of θ-oscillation amplitude (z-scored over 

REM, left) and frequency (right) during the REM periods in POST (n = 813613 
20-ms time bins pooled across all sessions), with individual session medians 
(dots) and interquartile ranges (horizontal lines) superimposed. (f) PF fidelity 
of LTs in POST REM calculated based on distinct subsets of 20-ms time bins 
separated according to high and low θ-oscillation amplitude (left panel) or 
frequency (middle panel) separated by the median values in each session. 
There was a significant effect of frequency (p = 0.02, two-sided WSRT, n = 660). 
Similarly, REM LTs calculated based on separating windows according to θ phase 
(right panel) into trough (−π/4 – π/4), ascending (π/4 – 3π/4), peak (3π/4 – 5π/4) 
and descending (5π/4-7π/4) phase. Median PF fidelities significantly differed 
across θ phase (P = 0.0015, Friedman’s test, n = 660) (g) We tested the effect of 
different sized time bins on REM LT-PF fidelities in PRE (left) and POST (right). 
While the effect was subtle and not significantly different across different sized 
bins (Friedman’s test), LTs using 125 ms and 250 ms bin durations exhibited 
significantly aligned LT-PF fidelities (median fidelities compared (one-sided) 
to null distributions obtained from 104 unit identity shuffles without multiple 
comparison corrections). (h) The posteriors used to calculate LTs exhibit 
greater sparsity for larger bin sizes in both PRE and POST REM. This is because 
larger bins result in more active neurons within each bin, producing increasingly 
sharper posteriors (see equation (9), Methods).
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Extended Data Fig. 3 | Additional examples of the evolution of LTs from PRE 
to POST. Similar to Fig. 3a, heat maps of ripple LTs in sliding 15 min windows 
from PRE through MAZE to POST (maze place fields in gray on right) for 6 sample 

units from each of 5 different sessions (hypnogram on top left indicating the 
brain state, quiet wake (QW), active wake (AW), rapid eye movement (REM) 
sleep, and slow-wave sleep (SWS) at each timepoint).
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replay score. (a) Distribution of replay scores in the different datasets 
calculating as percentile against time shuffled bins. Median scores for different 
epochs are shown with dashed lines (chance median score = 50; see Methods). 
(b) Ripple events were divided into quartiles according to replay score. Top 
panels show the place fields and sets of LTs calculated based on low and high 
quartile replay score events within PRE, MAZE, and POST. Bottom panels show 
population vector (PV) correlations between position bins in the PFs versus 
different sets of LTs. (c) Distribution of PF fidelity for each ripple subset. 
Median PF fidelities were significantly greater compared (one-sided) against 
surrogate distributions (from 104 unit identity shuffles, without multiple 
comparison corrections) in all subsets during MAZE and POST but not during 
PRE (PRE; P = 0.86, P = 0.67, P = 0.49, P = 0.06 for first to forth quartiles, 
respectively. MAZE and POST: P < 10−4 for all quartiles). (d) Place fields of 
participating units in replays show differing amounts of overlap with the 

decoded posteriors. Example events with high replay scores in PRE and POST, 
and low replay scores in POST showing posterior probability matrices and 
corresponding spike rasters of units sorted by place field order. The middle 
row depicts the mean correlation of the participating units’ place fields with 
the decoding posterior in each time bin. The bottom panels show the place 
fields and decoded positions of participating units for example time bins.  
Note that even bins with poor place-field coherence display sharp posteriors, 
because of the multiplication rule in Bayes formula, whereby spatial tunings of 
participating units are multiplied by each other. (e) Mean posterior correlation 
of PFs and decoded positions show increased place-field overlap in both low 
and high score replays in POST compared to PRE. Low and high replay score 
events in PRE did not differ significantly (PRE low versus high: P = 0.36; POST 
low versus high: P = 1.8 × 10−66; POST high versus PRE high: P = 1.1 × 10−282; POST 
low versus PRE high: P = 1.1 × 10−59; two-sided Mann Whitney U Test). ***P < 0.001.
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Extended Data Fig. 5 | Additional details and variations on MAZE/reMAZE 
analyses. (a) Place fields (PFs) from MAZE and reMAZE for all units used for 
analyses in Fig. 5. (b) PF peak firing rates during MAZE and reMAZE and their 
marginal histograms. Despite an apparent modest decrease in peak firing rates 
during reMAZE and disappearance or appearance of a small subset of units 
(orange dots), peak firing rates in reMAZE and MAZE remained significantly 
correlated. In this and subsequent panels, best linear fit and 95% confidence 
intervals are overlaid with black line and shaded gray, respectively. (c) The same 
as (b) but for spatial information between MAZE and reMAZE spatial tunings 
across units. (d). POST LT fidelity to MAZE PFs (left) is correlated with the 
similarity to the reMAZE PF. Likewise, POST LT similarity to reMAZE PFs (right) 
is correlated with the similarity between MAZE and reMAZE PFs. (e) MAZE/
reMAZE similarity correlation with POST PF fidelity (as in Fig. 5f) separately for 
units with lower (left) or higher (right) PF stabilities relative to each session’s 
median. Higher POST fidelity was predictive of greater MAZE/reMAZE 
similarity in both sets. (f) Multiple regression separately for each panel directly 
above in (e) The regressors were more predictive (higher R2) for units with more 
stable MAZE PFs, but POST LTs beta coefficients were similar between units 
with lower or higher PF stabilities (both p values = 0.02). P values were obtained 
by comparing (one-sided) the R2 and each coefficient against surrogate 
distributions from 104 unit-identity shuffles of reMAZE PFs. (g) PF fidelities of 
POST LTs calculated exclusively based on slow-wave sleep (SWS; left) or quiet 
wake (QW; right) ripple events both predicted similarity between MAZE and 
reMAZE place fields. However, a stronger correlation was observed for SWS 
LTs. (h) The same multiple regression analysis for modeling reMAZE PFs as in 

Fig. 5g but with the inclusion of POST SWS LTs (left panel), POST QW LTs (middle 
panel), or both (right panel), as regressors. While both SWS and QW POST LTs 
were predictive of reMAZE (P < 10−4 and P < 0.01, P values obtained by comparing 
(one-sided) the R2 and each coefficient against surrogate distributions from 
104 unit-identity shuffles of reMAZE PFs), the POST SWS LTs offered the 
stronger prediction. (i) The Gini coefficients of POST LT’s (measuring sparsity, 
i.e. sharpness of tuning) were significantly correlated with their similarity to 
reMAZE place fields. This demonstrates that sparser (as opposed to more 
diffuse) POST LTs display higher similarity with the upcoming place fields 
during maze re-exposure. ( j) Similar to Fig. 5f & 5g, but using tunings learned 
during θ-oscillations (active periods) on MAZE and reMAZE. This analysis also 
allowed us to add data from an additional session (from Rat S) for which video 
tracking was lost during the reMAZE epoch). Left panel, the similarity of POST 
LTs with MAZE θ-oscillation LTs predicted the similarity between MAZE and 
reMAZE θ-oscillation LTs. Right panel, POST LTs remained predictive of 
reMAZE θ-oscillation LTs in this control comparison. (k) The stability of POST 
LTs (z-scored against unit-id shuffles, as in Fig. 3d) for units with MAZE PF peak 
firing rate < 1 Hz (threshold used in this paper) were not significantly > 0.  
(l) In the same set of units, the POST LTs did not display a significant correlation 
with reMAZE PFs (left) but still showed a significant correlation with reMAZE 
θ-oscillation LTs (right). (m) The correlation with reMAZE θ-oscillation LT was 
absent for latePOST LTs. (n) Multiple regression analyses for modeling the 
reMAZE PFs (left) or reMAZE θ-oscillation LTs (right) for these low-firing units 
both resulted in significant regression coefficients for POST LTs. *P < 0.05,  
**P < 0.01, ***P < 0.001.
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Extended Data Fig. 6 | Additional examples of the evolution of LTs from PRE 
to reMAZE. Similar to Fig. 5h, heat maps of ripple LTs in sliding 15 min windows 
from PRE through MAZE, POST, and latePOST for sample units from 4 different 
sessions (hypnogram on top left indicate the brain state, quiet wake (QW), 
active wake (AW), rapid eye movement (REM) sleep, and slow-wave sleep (SWS) 

at each timepoint). MAZE and reMAZE place fields and LTs during PRE, POST, 
and latePOST are plotted on the right of each panel, except for Rat S for which 
we plot reMAZE θ-oscillation LTs (rather than reMAZE PFs) because video 
tracking was lost during reMAZE for this session.
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Extended Data Fig. 7 | The correlation between the learned tuning of units 
and their intrinsic and MAZE tuning properties. (a) Left, the distribution of 
locations of peak tuning across POST ripple LTs and maze place field (PFs; best 
linear fit in black with 95% confidence intervals in shaded gray). Right, the 
marginal distributions of peak locations relative to the center of the track show 
similar distributions between POST LTs (top) and PFs (bottom). (b) Relationship 
between PF features and stability and fidelity of the POST LTs. First row, 
distribution of each MAZE spatial tuning metric by pooling units across all 
sessions (n = 660 units). The median and interquartile ranges corresponding to 
individual sessions are depicted using overlaid lines. To analyze the connection 
between the POST stability and fidelity with each MAZE spatial tuning metric, 
the set of units within each session was divided into low or high categories 
according to the median. Among the spatial tuning metrics, peak place field 
firing rate (peak PF FR), and PF stability were predictive of the POST LT fidelity 
and stability. We saw no effect from metrics such as spatial information or PF 
distance from the track center. Cross-group comparisons used two-sided Mann 
Whitney U Tests. (c) Similar analysis on unit firing characteristics indicates that 
firing burstiness is not a factor driving LT stability or fidelity. Additionally, 
higher firing rates during the POST ripples affected the stability of POST LTs 
but not their fidelity. Median and interquartile ranges corresponding to 
individual sessions are superimposed with colored dots and lines. Cross-group 
comparisons used two-sided Mann Whitney U Tests. (d) The distribution of 
θ-oscillation amplitude (z-scored), frequency, and velocity of the animal 
observed during MAZE theta periods for a sample session (top row) and for 
overall distributions (bottom row) by pooling over all sessions (n = 2250347 
20-ms time bins). Median and interquartile ranges corresponding to individual 

sessions are superimposed with colored dots and lines. (e) From left to right,  
PF fidelity of MAZE θ-oscillation LTs calculated based on distinct subsets of 
20-ms time bins into Low/High relative to session medians showed significant 
effects for theta amplitude (1st column) (P = 0.01) or frequency (2nd column) 
(P = 7.9 × 10−16). The impact of θ phase (3rd column) on MAZE θ-oscillation LTs 
was investigated by calculating the LTs based on distinct set of 20-ms time bins 
according to θ-oscillation phase: Trough (−π/4 to π/4), Ascend (π/4 to 3π/4), 
Peak (3π/4 to 5π/4), Descend (5π/4 to 7π/4). LTs associated with the trough and 
descending phase of theta displayed higher PF fidelity than other theta phases 
(cross-group comparison using Friedman’s test; P = 2.2 × 10−13 with post hoc 
comparisons within each pair; Trough vs. Ascend: P = 2.1 × 10−5; Trough vs. Peak: 
P = 2.2 × 10−12; Trough vs. Descend: P = 0.002; Ascend vs. Peak: P = 3.6 × 10−5; 
Ascend vs. Descend: P = 0.12; Peak vs. Descend: P = 9.2 × 10−8). θ-oscillation 
periods split according to the animal’s velocity (4th column) during the 
θ-oscillation periods (p = 6.7 × 10−18). These panels indicate significant 
differences compared to chance levels (vs. unit-ID shuffle surrogates) within 
each group, as well as comparisons across groups (two-sided Wilcoxon 
Signed-Rank Tests). (f) Multiple regression analysis revealed that learned 
tunings calculated based on firing during MAZE θ-wave trough, but not θ-wave 
peak, strongly predict POST learned tunings, along with MAZE ripple LTs 
(θ-wave peak LTs: P = 0.35; θ-wave trough, PRE, ripple LTs, and MAZE PFs: P < 10−4). 
P values were obtained by comparing (one-sided) the R2 and each coefficient 
against surrogate distributions from 104 unit-identity shuffles of POST LTs. 
Results obtained by leaving out individual sessions are superimposed with dots. 
*P < 0.05, **P < 0.01, ***P < 0.001.
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Extended Data Fig. 8 | Unit stability and isolation. (a) Sample units (from Rat U) 
depicting mean spike waveform and unit stability assessed by spike amplitude, 
isolation distance, and firing rate over three sleep epochs (PRE, POST, and 
latePOST). Inclusion thresholds for isolation distance and firing rates are 
shown with dashed lines. (b) The distribution of unit stability measures by 
pooling across all units in sessions shown for each dataset. See Methods for 
further details on unit inclusion criteria. Within-group comparisons used 
two-sided Wilcoxon Signed Rank Tests. (c) The L-ratio was used to quantify the 
degree of overlap in the spike feature space between each pair of units. Each 
scatterplot (top row) shows the spikes of the reference unit #20 (black) and 
other units (colored) recorded on the same shank in an example recording 
session from the Giri dataset. The axes in each scatterplot correspond to the 

spike amplitude on two channels with maximal distinction between the pairs, 
showing a range of overlap with unit #20. For example, unit #30 on the leftmost 
inset showed almost no overlap, whereas unit 19 on the rightmost inset 
significantly overlapped. The L ratio (e.g. between unit #20 and the other units) 
was obtained by calculating the probability of spikes from the second unit 
belonging to the reference unit. An L ratio threshold of 10−3 was applied to 
include only isolated units for determining the LTs of each reference cell. 
Corresponding mean spike waveforms (bottom row) provided for each pair of 
units across recording electrodes. (d) The cumulative distributions of L ratios 
for this example session and across all sessions (top) (n = 40207 unit pairs).  
The L-ratios for each individual session (bottom), showing mean (dots), the full 
range (whiskers) and interquartile range (boxes).
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